Resampling Methods Improve the Predictive Power of Modeling in Class-Imbalanced Datasets

نویسنده

  • Paul H. Lee
چکیده

In the medical field, many outcome variables are dichotomized, and the two possible values of a dichotomized variable are referred to as classes. A dichotomized dataset is class-imbalanced if it consists mostly of one class, and performance of common classification models on this type of dataset tends to be suboptimal. To tackle such a problem, resampling methods, including oversampling and undersampling can be used. This paper aims at illustrating the effect of resampling methods using the National Health and Nutrition Examination Survey (NHANES) wave 2009-2010 dataset. A total of 4677 participants aged ≥ 20 without self-reported diabetes and with valid blood test results were analyzed. The Classification and Regression Tree (CART) procedure was used to build a classification model on undiagnosed diabetes. A participant demonstrated evidence of diabetes according to WHO diabetes criteria. Exposure variables included demographics and socio-economic status. CART models were fitted using a randomly selected 70% of the data (training dataset), and area under the receiver operating characteristic curve (AUC) was computed using the remaining 30% of the sample for evaluation (testing dataset). CART models were fitted using the training dataset, the oversampled training dataset, the weighted training dataset, and the undersampled training dataset. In addition, resampling case-to-control ratio of 1:1, 1:2, and 1:4 were examined. Resampling methods on the performance of other extensions of CART (random forests and generalized boosted trees) were also examined. CARTs fitted on the oversampled (AUC = 0.70) and undersampled training data (AUC = 0.74) yielded a better classification power than that on the training data (AUC = 0.65). Resampling could also improve the classification power of random forests and generalized boosted trees. To conclude, applying resampling methods in a class-imbalanced dataset improved the classification power of CART, random forests, and generalized boosted trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary rule-based systems for imbalanced data sets

This paper investigates the capabilities of evolutionary online rule-based systems, also called Learning Classifier Systems (LCSs), for extracting knowledge from imbalanced data. While some learners may suffer from class imbalances and instances sparsely distributed around the feature space, we show that LCSs are flexible methods that can be adapted to detect such cases and find suitable models...

متن کامل

A Prediction for Classification of Highly Imbalanced Medical Dataset Using Databoost.IM with SVM

Recently, Class imbalance problems have growing interest because of their classification difficulty caused by the imbalanced class distributions. In particular, many ensemble learning and machine learning methods have been proposed for classification of imbalance problem. However, these methods producing poor predictive accuracy of classification for two-class imbalanced dataset. In this paper,...

متن کامل

Generative Oversampling for Mining Imbalanced Datasets

One way to handle data mining problems where class prior probabilities and/or misclassification costs between classes are highly unequal is to resample the data until a new, desired class distribution in the training data is achieved. Many resampling techniques have been proposed in the past, and the relationship between resampling and cost-sensitive learning has been well studied. Surprisingly...

متن کامل

Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem

Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...

متن کامل

Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data

Learning from imbalanced data, where the number of observations in one class is significantly rarer than in other classes, has gained considerable attention in the data mining community. Most existing literature focuses on binary imbalanced case while multi-class imbalanced learning is barely mentioned. What’s more, most proposed algorithms treated all imbalanced data consistently and aimed to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014